Monday 14 August 2017

Redução média de ruído móvel


O Guia de cientistas e engenheiros para processamento de sinal digital Por Steven W. Smith, Ph. D. Capítulo 15: Filtros médios móveis Redução de ruído versus resposta por etapas Muitos cientistas e engenheiros se sentem culpados por usar o filtro de média móvel. Por ser tão simples, o filtro de média móvel geralmente é o primeiro a ser tentado quando confrontado com um problema. Mesmo que o problema esteja completamente resolvido, ainda há a sensação de que algo mais deve ser feito. Esta situação é realmente irônica. Não é apenas o filtro de média móvel muito bom para muitas aplicações, é ideal para um problema comum, reduzindo o ruído branco aleatório enquanto mantém a resposta de passo mais acentuada. A Figura 15-1 mostra um exemplo de como isso funciona. O sinal em (a) é um pulso enterrado em barulho aleatório. Em (b) e (c), a ação de suavização do filtro médio móvel diminui a amplitude do ruído aleatório (bom), mas também reduz a nitidez das bordas (ruim). De todos os filtros lineares possíveis que poderiam ser usados, a média móvel produz o menor ruído para uma nitidez da borda dada. A quantidade de redução de ruído é igual à raiz quadrada do número de pontos na média. Por exemplo, um filtro de média móvel de 100 pontos reduz o ruído por um fator de 10. Para entender por que a média móvel, se a melhor solução, imagine que queremos projetar um filtro com uma nitidez de borda fixa. Por exemplo, vamos assumir que nós corrigimos a nitidez da borda, especificando que há onze pontos no aumento da resposta do passo. Isso exige que o kernel do filtro tenha onze pontos. A questão de otimização é: como escolhemos os onze valores no kernel de filtro para minimizar o ruído no sinal de saída Uma vez que o ruído que estamos tentando reduzir é aleatório, nenhum dos pontos de entrada é especial, cada um é tão barulhento quanto o vizinho . Portanto, é inútil dar tratamento preferencial a qualquer um dos pontos de entrada atribuindo-lhe um coeficiente maior no kernel de filtro. O menor ruído é obtido quando todas as amostras de entrada são tratadas igualmente, isto é, o filtro médio móvel. (Mais adiante, neste capítulo, mostramos que outros filtros são essencialmente tão bons. O ponto é, nenhum filtro é melhor do que a média móvel simples). Atualizado 12 de março de 2013 O que é o Filtragem RC e a média exponencial e como eles diferem. A resposta ao A segunda parte da questão é que eles são o mesmo processo. Se um vem de um fundo eletrônico, o RC Filtering (ou RC Smoothing) é a expressão usual. Por outro lado, uma abordagem baseada em estatísticas de séries temporais tem o nome de Exponential Averaging, ou para usar o nome completo, Promessa ponderada exponencial média. Isso também é conhecido como EWMA ou EMA. Uma vantagem chave do método é a simplicidade da fórmula para calcular a próxima saída. Demora uma fração da saída anterior e uma menos esta fração vezes a entrada atual. Algebraicamente no momento k, a saída suavizada y k é dada por Como mostrado mais adiante, esta fórmula simples enfatiza eventos recentes, suaviza as variações de alta freqüência e revela tendências de longo prazo. Observe que existem duas formas da equação de média exponencial, a acima e uma variante. Ambos estão corretos. Veja as notas no final do artigo para obter mais detalhes. Nesta discussão, usaremos apenas a equação (1). A fórmula acima é às vezes escrita de forma mais limitada. Como esta fórmula é derivada e qual é a sua interpretação Um ponto-chave é como selecionamos. Examinar essa maneira simples é considerar um filtro passa-baixo RC. Agora, um filtro passa-baixo RC é simplesmente uma resistência série R e um capacitor paralelo C conforme ilustrado abaixo. A equação da série de tempo para este circuito é O produto RC tem unidades de tempo e é conhecido como constante de tempo, T. Para o circuito. Suponhamos que representamos a equação acima em sua forma digital para uma série de tempo que tenha dados dados cada h segundos. Nós temos exatamente a mesma forma que a equação anterior. Comparando os dois relacionamentos por um que temos, o que reduz ao relacionamento muito simples. Daí a escolha de N é guiada pela constante de tempo que escolhemos. Agora, a equação (1) pode ser reconhecida como um filtro passa-baixa e a constante de tempo tipifica o comportamento do filtro. Para ver o significado da Constante de Tempo, precisamos olhar para a característica de freqüência desse filtro RC de passagem baixa. Em sua forma geral, esta é Expressar em módulo e forma de fase onde temos o ângulo de fase. A freqüência é chamada de freqüência de corte nominal. Fisicamente, pode-se mostrar que, a essa freqüência, a potência no sinal foi reduzida pela metade e a amplitude é reduzida pelo fator. Em termos de dB, esta frequência é onde a amplitude foi reduzida em 3dB. Claramente, à medida que a constante de tempo T aumenta, então a freqüência de corte reduz e aplicamos mais alisamento aos dados, ou seja, eliminamos as freqüências mais altas. É importante notar que a resposta de freqüência é expressa em radians por segundo. Isso é um fator envolvido. Por exemplo, escolher uma constante de tempo de 5 segundos dá uma freqüência de corte efetiva de. Um uso popular do alisamento de RC é simular a ação de um medidor, como é usado em um medidor de nível de som. Estes geralmente são tipificados por sua constante de tempo, como 1 segundo para tipos S e 0,125 segundos para tipos F. Para estes 2 casos, as freqüências de corte efetivas são 0,16 Hz e 1,27 Hz, respectivamente. Na verdade, não é a constante de tempo que geralmente desejamos selecionar, mas os períodos que desejamos incluir. Suponhamos que tenhamos um sinal onde desejamos incluir recursos com um segundo período de P. Agora, um período P é uma freqüência. Poderíamos então escolher uma constante de tempo T dada por. No entanto, sabemos que perdemos cerca de 30 da saída (-3dB) em. Assim, escolher uma constante de tempo que corresponde exatamente às periodicidades que desejamos manter não é o melhor esquema. Geralmente, é melhor escolher uma freqüência de corte ligeiramente maior, digamos. A constante de tempo é então que, em termos práticos, é semelhante. Isso reduz a perda para cerca de 15 nesta periodicidade. Portanto, em termos práticos, reter eventos com periodicidade ou maior, escolha uma constante de tempo de. Isso incluirá os efeitos das periodicidades de baixo para baixo. Por exemplo, se desejamos incluir os efeitos de eventos que aconteçam com digamos um período de 8 segundos (0.125Hz), então escolha uma constante de tempo de 0,8 segundos. Isso dá uma freqüência de corte de aproximadamente 0,2 Hz para que nosso período de 8 segundos esteja bem na faixa de passagem principal do filtro. Se estivéssemos amostragem dos dados em 20 timessecond (h 0.05), então o valor de N é (0.80.05) 16 e. Isso dá uma visão sobre como configurar. Basicamente, para uma taxa de amostragem conhecida tipifica o período de média e seleciona quais flutuações de alta freqüência serão ignoradas. Ao olhar para a expansão do algoritmo, podemos ver que ele favorece os valores mais recentes, e também porque é referido como ponderação exponencial. Nós substituímos por y k-1 dá Repita este processo várias vezes leva a Porque está no intervalo então claramente os termos à direita tornam-se menores e se comportam como uma exponencial em decomposição. Essa é a saída atual é tendenciosa em relação aos eventos mais recentes, mas quanto maior, nós escolhemos T, então, o menor preconceito. Em resumo, vemos que a fórmula simples enfatiza eventos recentes suaviza eventos de alta freqüência (período curto) revela tendências de longo prazo Apêndice 1 8211 Formas alternativas da equação Cuidado Há duas formas da equação de média exponencial que aparecem na literatura. Ambos são corretos e equivalentes. A primeira forma, como mostrado acima, é (A1) O formulário alternativo é 8230 (A2) Observe o uso na primeira equação e na segunda equação. Em ambas as equações e são valores entre zero e unidade. Anteriormente, foi definido como Agora escolhendo para definir. Portanto, a forma alternativa da equação de média exponencial é, em termos físicos, significa que a escolha da forma uma usa depende de como alguém quer pensar em tomar como a equação da fração retroativa (A1) ou Como a fração da equação de entrada (A2). A primeira forma é um pouco menos pesada ao mostrar a relação de filtro RC e leva a uma compreensão mais simples em termos de filtro. Analista chefe de processamento de sinal da Prosig Dr. Colin Mercer é analista de processamento de sinal principal da Prosig e é responsável pelo processamento de sinais e suas aplicações. Anteriormente, no Instituto de Pesquisas de Som e Vibração (ISVR) da Universidade de Southampton, onde fundou o Data Analysis Center. Ele é um engenheiro fretado e um companheiro da British Computer Society. Eu acho que você deseja mudar o 8216p8217 para o símbolo para pi. Marco, obrigado por apontar isso. Eu acho que este é um dos nossos artigos mais antigos que foi transferido de um documento antigo de processamento de texto. Obviamente, o editor (eu) não conseguiu detectar que o pi não havia sido transcritos corretamente. Isso será corrigido em breve. É uma boa explicação do artigo sobre a média exponencial. Creio que há um erro na fórmula para T. Ele deve ser T h (N-1), não T (N-1) h. Mike, obrigado por detectar isso. Acabei de verificar a nota técnica original do Dr. Mercer8217 em nosso arquivo e parece que houve erro ao transferir as equações para o blog. Vamos corrigir a publicação. Obrigado por nos informar. Obrigado, obrigado, obrigado. Você pode ler 100 textos DSP sem encontrar nada dizendo que um filtro de média exponencial é o equivalente a um filtro R-C. Hmm, você tem a equação para um filtro EMA correto, não é Yk aXk (1-a) Yk-1 em vez de Yk aYk-1 (1-a) Xk Alan, ambas as formas da equação aparecem na literatura, e Ambos os formulários estão corretos, como vou mostrar abaixo. O ponto que você faz é importante porque usar a forma alternativa significa que a relação física com um filtro RC é menos aparente, além disso, a interpretação do significado de um mostrado no artigo não é apropriada para o formulário alternativo. Primeiro, mostre que ambos os formulários estão corretos. A forma da equação que eu usei é e a forma alternativa que aparece em muitos textos é Nota no acima, usei latex 1latex na primeira equação e latex 2latex na segunda equação. A igualdade de ambas as formas da equação é mostrada matematicamente abaixo, tomando passos simples de cada vez. O que não é o mesmo é o valor usado para látex latex em cada equação. Em ambas as formas latex latex é um valor entre zero e unidade. Primeira equação de reescrita (1) substituindo latex 1latex por latex latex. Isso dá latexyk y (1 - beta) xklatex 8230 (1A) Agora defina latexbeta (1 - 2) látex e também temos latex 2 (1 - beta) látex. Substituindo estes na equação (1A) dá latexyk (1 - 2) y 2xklatex 8230 (1B) E, finalmente, reorganizar dá Esta equação é idêntica à forma alternativa dada na equação (2). Coloque mais látex de latex 2 (1 - 1). Em termos físicos, significa que a escolha da forma uma usa depende de como se quer pensar em tomar latexalphalatex como a equação da fração retrocessora (1) ou como a fração da equação de entrada (2). Como mencionado acima, usei o primeiro formulário, uma vez que é um pouco menos pesado ao mostrar a relação de filtro RC e leva a uma compreensão mais simples em termos de filtro. No entanto, omitir o acima é, na minha opinião, uma deficiência no artigo, já que outras pessoas podem fazer uma inferência incorreta, então uma versão revisada aparecerá em breve. Sempre me perguntei sobre isso, obrigado por descrevê-lo tão claramente. Eu acho que outro motivo para a primeira formulação é agradável é o mapa alfa para 8216smoothness8217: uma escolha maior de alfa significa uma saída 8216 mais suave8217. Michael Obrigado pela observação 8211 Eu adicionarei ao artigo algo nessas linhas, pois sempre me parece melhor relacionar-me com os aspectos físicos. Dr. Mercer, excelente artigo, obrigado. Eu tenho uma pergunta sobre a constante de tempo quando usado com um detector rms como em um medidor de nível de som que você se refere no artigo. Se eu usar suas equações para modelar um filtro exponencial com Constante de Tempo 125ms e usar um sinal de passo de entrada, eu realmente recebo uma saída que, após 125ms, é 63.2 do valor final. No entanto, se eu quadrado o sinal de entrada e coloque isso através do filtro, vejo que preciso dobrar a constante de tempo para que o sinal atinja 63,2 de seu valor final em 125ms. Você pode me informar se isso é esperado? Muito Obrigado. Ian Ian, se você marcar um sinal como uma onda senoidal, basicamente, você está dobrando a freqüência de sua fundamental, além de apresentar muitas outras freqüências. Como a freqüência foi efetivamente dobrada, está sendo 8216 reduzida8217 por uma quantidade maior pelo filtro passa-baixa. Em conseqüência, leva mais tempo para atingir a mesma amplitude. A operação de quadratura é uma operação não linear, então eu não acho que sempre dobrará precisamente em todos os casos, mas tenderá a dobrar se tivermos uma baixa freqüência dominante. Observe também que o diferencial de um sinal quadrado é o dobro do diferencial do sinal 8220un-squared8221. Eu suspeito que você esteja tentando obter uma forma de alisamento quadrático médio, que é perfeitamente bom e válido. Pode ser melhor aplicar o filtro e depois quadrado, como você conhece o ponto de corte efetivo. Mas se tudo o que você tiver é o sinal ao quadrado, então, usando um fator de 2 para modificar seu valor alfa do filtro, você irá retornar à freqüência de corte original, ou colocando um pouco mais simples, defina sua freqüência de corte duas vezes o original. Obrigado pela sua resposta, Dr. Mercer. Minha pergunta estava realmente tentando entender o que realmente é feito em um detector de rms de um medidor de nível sonoro. Se a constante de tempo estiver definida para 8216fast8217 (125ms), teria pensado que, intuitivamente, você esperaria um sinal de entrada sinusoide para produzir uma saída de 63,2 de seu valor final após 125ms, mas como o sinal está sendo quadrado antes de chegar ao 8216mean8217 Detecção, na verdade, levará duas vezes o tempo que você explicou. O objetivo principal do artigo é mostrar a equivalência da filtragem RC e da média exponencial. Se estamos discutindo o tempo de integração equivalente a um verdadeiro integrador retangular, você está correto que há um fator de dois envolvidos. Basicamente, se possuímos um verdadeiro integrador retangular que se integra aos segundos de Ti, o tempo equivalente do integer RC para alcançar o mesmo resultado é 2RC segundos. Ti é diferente do RC 8216time constant8217 T que é RC. Assim, se tivermos uma constante de tempo 8216Fast8217 de 125 ms, isso é RC 125 ms, então isso é equivalente a um verdadeiro tempo de integração de 250 ms. Obrigado pelo artigo, foi muito útil. Existem alguns trabalhos recentes em neurociência que usam uma combinação de filtros EMA (EMA de janela curta com espaço largo EMA 8211) como um filtro passa-banda para análise de sinal em tempo real. Eu gostaria de aplicá-los, mas estou lutando com os tamanhos de janela que diferentes grupos de pesquisa usaram e sua correspondência com a freqüência de corte. Let8217s dizem que eu quero manter todas as freqüências abaixo de 0.5Hz (aprox) e que adquiro 10 amostras em segundo lugar. Isso significa que fp 0.5Hz P 2s T P100.2 h 1fs0.1 O anterior, o tamanho da janela que eu deveria usar deveria ser N3. Este raciocínio correto Antes de responder a sua pergunta, devo comentar sobre o uso de dois filtros de passagem alta para formar um filtro de passagem de banda. Presumivelmente, eles funcionam como dois fluxos separados, então um resultado é o conteúdo de látex latexf para metade da taxa de amostragem e o outro é o conteúdo do latex latexf para metade da taxa de amostragem. Se tudo o que está sendo feito é a diferença nos níveis quadrados médios como indicar o poder na banda do latex latexf para latexf latex, então pode ser razoável se as duas freqüências de corte estiverem suficientemente distantes, mas espero que as pessoas que usam essa técnica Estão tentando simular um filtro de banda mais estreito. Na minha opinião, isso não seria confiável para um trabalho sério e seria motivo de preocupação. Apenas para referência, um filtro de passagem de banda é uma combinação de um filtro de passagem alta de baixa freqüência para remover as baixas freqüências e um filtro passa-baixa de alta freqüência para remover as altas freqüências. Há, naturalmente, uma forma de passagem baixa de um filtro RC e, portanto, um EMA correspondente. Talvez, embora o meu julgamento seja excessivo, sem saber todos os fatos. Então, você poderia me enviar algumas referências aos estudos que você mencionou, para que eu possa criticar conforme apropriado. Talvez estejam usando um passe baixo, bem como um filtro passa-alto. Agora, voltando-se para a sua pergunta real sobre como determinar N para uma determinada freqüência de corte do alvo, acho melhor usar a equação básica T (N-1) h. A discussão sobre os períodos teve como objetivo dar às pessoas a sensação do que estava acontecendo. Então, veja a derivação abaixo. Nós temos o latexT latexT (N-1) hlatex e látex latexT12 onde latexfclatex é a freqüência de corte nocional e h é o tempo entre as amostras, Claramente latexh 1 latex, onde latexfslatex é a taxa de amostragem em samplessec. A reorganização de T (N-1) h em uma forma adequada para incluir a freqüência de corte, latexfclatex e a taxa de amostragem, latexfslatex, é mostrada abaixo. Então, use latexfc 0.5Hzlatex e latexfs 10latex samplessec para que latex (fcfs) 0.05latex Dê Assim, o valor inteiro mais próximo é 4. Reorganizando o acima, temos Assim com N4 temos latexfc 0.5307 Hzlatex. O uso de N3 dá um latexfclatex de 0,318 Hz. Observe com N1 que temos uma cópia completa sem filtragem. REDUÇÃO DE NOISE POR AVERAGEM DE IMAGEM O ruído da imagem pode comprometer o nível de detalhe em suas fotos digitais ou de filme, e assim reduzir esse ruído pode melhorar sua imagem final ou imprimir. O problema é que a maioria das técnicas para reduzir ou remover o ruído sempre acabam suavizando a imagem também. Alguns suavizantes podem ser aceitáveis ​​para imagens que consistem principalmente em água suave ou céus, mas a folhagem em paisagens pode sofrer com tentativas ainda conservadoras de reduzir o ruído. Esta seção compara alguns métodos comuns para redução de ruído e também introduz uma técnica alternativa: a média de exposições múltiplas para reduzir o ruído. A média da imagem é comum em astrofotografia de ponta, mas é possivelmente subutilizada para outros tipos de fotografia de baixa luz e noite. A média possui o poder de reduzir o ruído sem comprometer os detalhes, porque realmente aumenta a relação sinal / ruído (SNR) da sua imagem. Um bônus adicional é que a média também pode aumentar a profundidade de bits da sua imagem além do que seria possível com uma única imagem. A média também pode ser especialmente útil para aqueles que desejam imitar a suavidade do ISO 100, mas cuja câmera apenas cai no ISO 200 (como a maioria das câmeras digitais digitais Nikon). A média da imagem funciona sob o pressuposto de que o ruído em sua imagem é verdadeiramente aleatório. Desta forma, as flutuações aleatórias acima e abaixo dos dados reais da imagem irão gradualmente pairar, uma vez que a média é cada vez mais imagens. Se você tirasse dois tiros de um remendo cinzento liso, usando as mesmas configurações da câmera e em condições idênticas (temperatura, iluminação, etc.), você obteria imagens semelhantes às mostradas à esquerda. O gráfico acima representa flutuações de brilho ao longo de finas tiras azul e vermelha de pixels nas imagens superior e inferior, respectivamente. A linha horizontal tracejada representa a média, ou o que parece essa trama se houvesse zero ruído. Observe como cada uma das linhas vermelha e azul varia de forma única acima e abaixo da linha tracejada. Se tomássemos o valor de pixel em cada local ao longo desta linha, e a média com valor para o pixel no mesmo local para a outra imagem, então a variação do brilho seria reduzida da seguinte maneira: mesmo que a média dos dois ainda Flutua acima e abaixo da média, o desvio máximo é bastante reduzido. Visualmente, isso tem o efeito de fazer o patch para a esquerda parecer mais suave. Duas imagens médias geralmente produzem ruído comparável a uma configuração ISO que é meio sensível, então duas imagens médias obtidas no ISO 400 são comparáveis ​​a uma imagem tirada na ISO 200, e assim por diante. Em geral, a magnitude da flutuação do ruído cai pela raiz quadrada do número de imagens em média, então você precisa usar 4 imagens para reduzir a magnitude pela metade. COMPARAÇÃO DE DETALHE DE RUÍDO O próximo exemplo ilustra a eficácia da média da imagem em um exemplo do mundo real. A seguinte foto foi tirada no ISO 1600 na Canon EOS 300D Digital Rebel e sofre de ruído excessivo.

No comments:

Post a Comment